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In human societies, opinion formation is mediated by social interactions, consequently taking place on a
network of relationships and at the same time influencing the structure of the network and its evolution. To
investigate this coevolution of opinions and social interaction structure, we develop a dynamic agent-based
network model by taking into account short range interactions like discussions between individuals, long range
interactions like a sense for overall mood modulated by the attitudes of individuals, and external field corre-
sponding to outside influence. Moreover, individual biases can be naturally taken into account. In addition, the
model includes the opinion-dependent link-rewiring scheme to describe network topology coevolution with a
slower time scale than that of the opinion formation. With this model, comprehensive numerical simulations
and mean field calculations have been carried out and they show the importance of the separation between fast
and slow time scales resulting in the network to organize as well-connected small communities of agents with
the same opinion.
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I. INTRODUCTION

The network approach has contributed significantly to our
understanding of the structure, function, and response of
various complex systems from genetic transcriptions to hu-
man societies �1,2�. In the case of human social systems, this
approach was introduced by social scientists and they estab-
lished important concepts and tools to study them �3,4�. Ac-
cording to the social network paradigm, social life consists of
the flow and exchange of norms, values, ideas, and other
social and cultural resources channeled through a network
�5�. Hence, the networks serve as substrates for various col-
lective social phenomena such as diffusion and spreading
processes �of, e.g., news and epidemics�, opinion formation,
language evolution, etc.

Until recently, the studied empirical data sets of social
systems remained rather limited since the basic source of
data were questionnaires, thus the focus had been on small
scale properties. However, the most recent development in
information-communication technology has opened the pos-
sibility to collect much larger data sets from Internet, emails,
phone records, etc. �6–11�. While the scope of these records
is narrow as compared to detailed questionnaires, their huge
amount and objective quantifiability enable us to study prob-
lems, which were impossible to treat before, including the
investigation of the structure and dynamics of entire popula-
tions �12�. Much has been learned from these studies, such as
the broad distributions of network characteristics, the small
world properties, the modular organization of the social net-
work, and the relationship between the network topology and
the intensity of the ties in the net.

One of the key problems in studying society and social
dynamics falls under the term of “opinion formation,” which
deals with a �measurable� response of the society to an issue,
such as an answer to a political question or the acceptance of
innovation. This problem has attracted a lot of interest, and a
number of models of competing options have been intro-
duced to study it �13�. The simplest one is the so-called voter

model �14�, which has a binary opinion variable with the
opinion alignment proceeding by a random choice of neigh-
bors. Other discrete opinion formation models include those
by Weidlich �15� and Sznajd-Weron and Sznajd �16�, where
more than just a pair of spins is associated with the decision
making procedure. These models are reminiscent to the Ising
model, and in the noiseless �T=0� case, they usually ap-
proach an asymptotic state of consensus �ferromagnetic
state�.

If these models are studied on complex networks instead
of regular lattices �17–19�, the temporal dynamics of the
phase transition from one type of consensus to the other one
may change significantly. Introducing noise or “social tem-
perature” makes the analogy with physics even closer and
leads to a number of phenomena from paramagnetic phase to
stochastic resonance. In addition, the introduction of an ex-
ternal field as the carrier of the influence of mass media is a
natural and widely considered generalization �see, e.g.,
�17,20��. Also, systems with more than two possible opinions
have been considered �21�, which have found natural exten-
sion in models where the opinion of individuals is repre-
sented by a continuous variable �22–24�. By introducing a
parameter of bounded confidence or tolerance that describes
the situation where opinions close enough approach each
other, the asymptotic state can be quite rich in allowing the
coexistence of a number of different opinions. We also note
that opinion dynamics is closely related to problems of com-
peting cultures �25� or languages �26�.

Opinion formation in a human society is mediated by so-
cial interactions between individuals, consequently, it takes
place on a network of relationships and at the same time it
influences the network itself. Such behavior was analyzed in
a seminal paper by Holme and Newman �27�. Recently, this
problem of coevolving opinion formation networks was con-
sidered for discrete �28,29� and continuous �30� opinion dy-
namics. In these, the separation of the time scales was con-
trolled by the relative frequency of the opinion updating and
rewiring processes, which is an important parameter of the
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problem. It was found that the adjustment of the network has
a major effect both on the opinion dynamics and on the re-
sulting topology and that minor changes in the updating rules
have dramatic consequences. In the case of discrete models,
it turned out that the self-adaptation of the network resulted
in the symmetry breaking of the asymptotic state with re-
spect to the direction of the information transfer. In the case
of continuous opinion formation dynamics, rewiring tends,
on one hand, to hinder the consensus formation for large
tolerance since it breaks the clusters. On the other hand, there
is a tendency to decrease the number of different clusters for
small tolerance. In all these investigations, agents were con-
sidered to be uniform.

Here, we also consider the continuous opinion formation
in a coevolving network but with the addition that the indi-
viduals need not to be uniform. In particular, we examine a
situation in which these nonidentical individuals form their
opinions in information-transferring interactions with others.
This could happen directly through discussions between in-
dividuals constituting the network structure or indirectly by
sensing the overall mood or opinion of all the other individu-
als, the effect of which would depend on their personal atti-
tude toward the overall opinion. We expect that, in general,
the time scale for detectable changes in the network structure
is considerably slower than the time scale for the direct so-
cial exchanges to take place. In order to describe this situa-
tion, we have developed a dynamic network model, where
we take into account short range interactions for direct dis-
cussions between pairs of individuals, long range interac-
tions for sensing the overall opinion modulated by the atti-
tude of an individual, and external field for outside influence.
The opinion formation dynamics is assumed to take place
with a fast time scale well-separated from the slow time scale
network topology coevolution included by opinion-
dependent link-rewiring processes of the kind introduced as
the basic mechanisms of network sociology �31,32�. Note
that unlike the model introduced in �30�, our model does not
contain any parameter for bounded confidence, which could
alter the time scale of network coevolution, as we discuss
later.

This paper is organized such that next we describe our
model, followed by presenting the numerical results and then
by finding analytical solutions to the dynamical equation
with mean field approximation. Finally, we discuss the re-
sults and draw conclusions.

II. DESCRIPTION OF THE MODEL

Let us consider an opinion formation in a network of a
fixed number of individuals or agents �N� to whom a simple
question is posed. We assume that the agents are unbiased
but they have initial opinions concerning the issue of the
question. The process of opinion formation is started by let-
ting the agents to discuss or exchange their views with their
acquaintances or friends for some time. After this, some dis-
cussions are interrupted at regular intervals to let discussions
with new agents to start. At any time, an agent may decide to
fix its opinion to either total agreement or disagreement, after
which the decision is considered irrevocable and no longer

modifiable, although the agent continues to discuss and in-
fluence others. The whole process stops when everyone has
balloted. It should be noted that here, the aim is not to reach
a consensus of opinion, but to give every agent a chance to
use its social network to form a point of view through ex-
change of information.

This kind of a social system can be described by a net-
work where the nodes correspond to the agents and the edges
to the links or interactions between them. Each individual
agent i is described with the time-dependent state variable
xi� �−1,1� measuring the agent’s instantaneous inclination
toward the posed question. The agent’s interactions with
other agents are described with the adjacency matrix ele-
ments Aij � �1,0� that represent the presence or absence of
discussions between the pair of agents related to the question
at hand. Thus, the initial topology of the network defined by
the adjacency matrix A changes when the agents are allowed
to stop discussions.

As for the evolution dynamics of this system, we assume
that the state variable xi of node i depends on the links of the
network, and, likewise, the links of the network change ac-
cording to the values of the state variable of each node.
These mutually dependent processes can be described in
general with a dynamical equation of the following form:

dxi

dt
=

�xi

�t
+ �

j

Ô�xi,xj,g�Aij , �1�

which is based on the assumption of two separate time
scales. Here, we assume that many discussions take place
before a change in the network structure occurs, that is, the
time scale for each discussion or exchange of information
�“transaction”� is dt, while the time scale for a change in
connections in the network �“generation”� is T=gdt. The
quantity g defines the number of transactions per generation
and describes the separation between the fast transaction and

slow generation time scales. In this equation, Ô stands for an
operator that changes the entries and/or the size of the adja-

cency matrix. The actions of the operator Ô are necessarily
discrete and limited to few processes. In general, there are
only four basic ways to modify a simple network: either one
deletes/creates links or deletes/creates nodes. Then, a com-
mon operation of rewiring can be regarded as a composed
operator with one deletion followed by one creation of a link.
An important point in modeling a particular system is that

the operator Ô should contain rules for link deletion or cre-
ation reflecting all the additional information about the sys-
tem.

For large g or T, the effect of discreteness of network
evolution events on the agent’s state variable xi can be
treated separately and the dynamics between such updates is
essentially continuous. Then, Eq. �1� can be approximated as
follows:

�xi

�t
= �i f0��xj�� + f1��xj��xi + hi, �2�

where the first term on the right-hand side represents the
combined effect of an agent i sensing the overall opinion of
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all the other agents �f0��xj��� but modulated by the agent’s
own attitude toward overall or public opinion. We denote this
personal attitude by �i and assume it being random and uni-
formly distributed between −1 and 1, where the former cor-
responds to completely opposing and the latter to completely
agreeing attitude of the agent i toward the overall opinion.
The second term on the right-hand side represents the direct
discussions of the agent i with the agents j it is linked to.
Note that the agents could be different also in their attitudes
toward direct discussions, which would introduce another at-
titude parameter in the second term. Instead �i should be
considered as the relative attitude parameter. The third term
on the right-hand side, hi, is an external field representing the
personal bias toward either opinion �−1 or +1� due to, e.g.,
mass media �newspapers, TV, radio�. In Eq. �2�, f0 and f1
standing for the dynamic long and short range interaction
terms are defined as follows:

f0 = �
�=2

�max 1

�
�

j�m��i�
xj , �3�

and

f1 = sgn�xi� �
j�m1�i�

xj , �4�

where m��i� means the set of nodes that are � steps away
from node i �or �th neighbors of i� and �max is the number of
steps needed to reach the most distant neighbors of i �or the
maximum range of interactions for i�.

Note that Eq. �2� allows changes in sign in the state vari-
able but also its exponential decay or growth such that �xi�
could eventually become larger than one, which carries no
meaning in our model. Thus, we need first to detect the to-
tally convinced agents and stop their dynamics, which can
simply be done by a line of computer program “if abs�xi�
�1, then xi=sgn�xi�,” that is, these agents cannot modify
their state in subsequent times, but they are still linked to the
network and taken into account in the dynamical evolution of
the undecided agents.

In order to consider the other dynamical process �and the
corresponding time scale� contained in Eq. �1�, namely, net-
work connection topology changes at generation time inter-
vals T, we have here adopted the scheme of rewiring. There
are basically two possibilities, either global or local rewir-
ing, which we will perform with probability y and 1−y, re-
spectively. These rewiring schemes are rooted to the funda-
mental link formation mechanisms of network sociology
proposed by Kossinet and Watts �31�: focal closure indepen-
dently of distance thus being global and triadic closure be-
tween close network neighbors thus being local in nature. In
both these schemes, first, the agent i can choose to cut an
existing link with an agent j, i.e., end a discussion if their
opinions are incompatible. In order to perform this process,
the quantity

pij = Aij

�xi − xj�
2

�5�

is calculated and all the links are put in ranking order. Then
links with larger weights pij are deleted first since they cor-

respond to divergence of opinion. After this link deletion
step, follows the link creation step using either local or glo-
bal rewiring scheme.

In the local rewiring scheme, an agent i can create a link
with a second neighbor by starting a discussion with the
“friend of a friend” if this new link can help the agent in
reaching a state of total conviction ��xi�=1�. In order to de-
termine this, we calculate the quantity

qij = �1 − Aij����A2�ij�
�xi + xj�

2
, �6�

where the first two factors including the adjacency matrix
�with ��x� being the discrete step function ��x�=�k=1

N−2�k,x�,
test the existence of a link to the second neighbor and the
third factor �xi+xj� /2 is the measure of similarity of opinions
between the agents. Then, all the potential local rewiring
links are put to ranking order, of which the links with larger
weights qij are created first.

In the global rewiring scheme, an agent i can create a link
with further neighbors ���2�, provided their opinions are
similar. In order to determine this, we follow a similar pro-
cedure as above by calculating instead the following quan-
tity:

rij = �1 − Aij��1 − ���A2�ij��	1 −
�xi − xj�

2

 , �7�

where, once again, the first two factors test the far link exis-
tence and the third the similarity of opinions between agents,
followed by putting the potential links to ranking order and
creating links with larger weights first.

The rewiring of each node i is done in such a fashion that
the number of links deleted is equal to the number of links
created. Therefore, the total number of links should be con-
served. This is clearly the case when the rewiring is per-
formed sequentially, but in case of parallel rewiring �as we
do�, it could happen that if both agents i and j are performing
rewiring simultaneously, their mutual actions could lead to
the net creation or deletion of a link. Then, the total number
of links would not be conserved.

Next, we will present the numerical results of our model
followed by the analytical mean field theory treatment of the
dynamical equation.

III. NUMERICAL RESULTS

For computer simulations, we have first initialized our
model system to a random network configuration of N nodes
and average degree �k0�. This is done in the beginning of
each simulation run to secure a different random configura-
tion for the initial network and good statistics for the aver-
aged quantities of interest. As other initial conditions, we
chose the fixed constant �i for the personal attitude and the
state variable xi�0� of agent i randomly from a uniform dis-
tribution between −1 and 1 and from a Gaussian distribution
with unit standard deviation, respectively. In addition, we
chose all the external bias field terms to be hi=0.

With these initial choices, we are left with only two pa-
rameters to vary, namely, y and g, upon which the average
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properties of the final network should depend and scale with
the initial conditions �k0� and N. For the sake of simplicity,
we here set y=0 in all our numerical simulations, which
means that we take into account only the local rewiring to
study the effect of the parameter g alone.

Since our model includes fast transaction dynamics and
slower generation dynamics for network rewiring, the simu-
lations have been carried out by using the following two-step
process. In the first step, the dynamics of transactions de-
scribed with Eq. �2� is realized by numerical integration us-
ing a simple Euler method, in which the time step was set to
dt=10−4 as found to guarantee the stability and reliability of
the numerical calculations. By keeping the parameters fixed,
the system is driven until the specified time �gdt� or g time
steps to then do the second step, namely, the network rewir-
ing with the procedure described in the previous section.
This two-step process is iterated until the system reaches its
final state, where no more changes in the xi’s and in the
network connections take place. We have found that the way
the system approaches its final state consists of two regimes,
which can be analyzed by controlling the number of changed
links per cycle. The first regime shows a rapid roughly ex-
ponential decay where both the number of agents that change
opinions and the number of rewired links is high. This fast
decay crosses over to a very slow regime after most of the
agents have reached either opinion x=1 or −1. During this
slow decay, when frustrated links try to get optimal positions
and the remaining few undecided agents converge their opin-
ions to x=1 or −1, the network structure is found not to
change significantly. These few “nonconformists” that take
extremely long time to get fully convinced may serve as kind
of nucleation centers if an external field �media effect� is
switched on, which is an issue we will investigate in the
future.

From the simulation results, we calculated the following
averaged single site properties: the degree �k�, the shortest
path �L�, the average clustering coefficient �C�, the mean
number of second neighbors �n�2��, and the average cluster
size or susceptibility �s�=�snss

2 /�snss that is the second mo-
ment of the number of s-size clusters, see, e.g., �33�. Accord-
ing to percolation theory, the sums run over all the cluster
sizes excluding the giant component, as identified in finite
samples with the largest cluster.

Figure 1 shows the various properties of the final network
as a function of g, averaged over 100 realizations for the
initial average degree �k0�=4 and for the system size N
=200. Here, one can visually distinguish three regions of
behavior. For small g�10, the dynamics of the state variable
is practically irrelevant and accordingly, the rewiring of the
network is random and favors the formation of triangles. The
final network appears divided into two large cliques of about
N /2 nodes with almost no connections between them, as
expected from models without dynamics.

On the other hand, if g is larger than the mean number of
iterations �i.e., �104� needed for the state variable to reach
either of its extreme values at all sites, no rewiring of the
network is seen to occur. Thus, the resulting network shows
the properties of an Erdös-R2nyi graph, i.e., �k�=N�C�, and
�L�=ln N / ln�k�. Furthermore, since the initial network is
random, no apparent clustering of the two opposite opinions
is seen to develop.

For the intermediate g values, both dynamical processes,
slow and fast, are at play and the net result is that the final
configuration of the network shows a segregation of several
well-connected communities of roughly similar size and of
uniform opinion, as the ones shown in the middle top of Fig.
1. Such result makes this model of opinion formation suit-
able to describe the complex community structure often
found in human societies �see, e.g., �11,34��. It is relevant to
mention that Mandrà et al. �35� have studied rewiring in the
Ising-Glauber dynamics with tunable thresholds and identi-
fied the emergent domains of spins with communities.

Such an emergence of medium size communities is
clearly seen in the susceptibility �s�, which peaks strongly
�by two orders of magnitude� for the range of g from about
10 to more than 103. It should be noted here that computa-
tionally the algorithm to solve Eq. �2� in a rewiring network
goes roughly as O�N3�, which makes the simulation of sys-
tems with more than 1000 nodes very time-consuming. How-
ever, as it is seen in the inset of Fig. 1, the system size
dependence of all quantities is monotonic and can thus be
extrapolated to the thermodynamic limit. Hence, a subject of
further study would be to investigate the nature of the tran-
sitions between the observed morphological phases. In addi-
tion, we would like to point out that all the other quantities

FIG. 1. �Color online� Average degree �k� �squares�, average
clustering coefficient �C� �circles�, average susceptibility �s� �dia-
monds�, average shortest path �L� �up triangles�, and average num-
ber of second neighbors �n�2�� �down triangles� for a network of size
N=200 and averages taken over 100 runs. The arrows indicate the g
values where the susceptibility changes drastically. The inset shows
such quantities as a function of system size N for g=1000 and
averaged over 1000 realizations. The graphs at the top are examples
of final network configurations for N=400 and g=5,103 ,105, which
show three different types of configurations emerging. White circles
mean agents with x=1 and black those with x=−1.
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show gradual behavior as a function of g. In the models of
opinion formation without network dynamics, the resulting
network is either a single cluster of consensus or two clusters
of about the same size with opposite opinions. �As stated
before, we do not have bounded confidence in our model,
which could be another source of the creation of many com-
munities �29�.�

Note that to produce the graphs in Fig. 1, we have used a
visualization software �36� that tends to group agents accord-
ing to their topological properties, and, consequently, com-
munities are distinguishable by the eye. It is worth pointing
out that within each community all its agents share the same
opinion. In most previous studies, the similarity of attributes
between agents has not been considered to define communi-
ties �see, for instance, the recent comprehensive review by
Fortunato �37��.

In order to find out whether the communities formed by
agents of the same opinion match the ones formed by topo-
logical similarities, we have used the community detection
algorithm based on the local fitness concept described by
Lancichinetti et al. �38�. In Fig. 2, we show the results for
the network configuration at the middle top of Fig. 1 by
using Eq. �1� of Ref. �38�, with the resolution parameter set
to 0.9. Observe that in Fig. 1, the color coding for the opin-
ions allows the eye to distinguish four well-defined commu-
nities, while in Fig. 2, the algorithm based on the local fit-
ness separates the network into seven communities. Note that

although there is in general good correspondence between
these two partitions, the community detection algorithm re-
veals substructure that the eye does not capture.

The key point is to investigate what are the circumstances
that drive the system to form many communities of approxi-
mately the same size. Here, the role of the personal attitude
parameter �i is very important, since a network with agents
having all positive �’s should reach consensus quite rapidly
without community structure forming, while a network with
only negative �’s should separate into two clusters of differ-
ent opinions. However, in case of �’s being randomly dis-
tributed �as is assumed in this study� frustration is introduced
to the system, making the network structured.

It is instructive to look at the distribution of the �’s and
how it relates to the cluster structure. For small values of g,
where the rewiring process is very rapid and only two clus-
ters eventually develop, the attitude parameters have a minor
role, so the � distributions in the two clusters are broad and
similar. However, for the intermediate g values, the situation
is different. Here, the smaller clusters have a rather narrow
distribution with mostly negative � values, while the distri-
butions for larger clusters are broad and shifted toward posi-
tive � values. Naturally, the agents with negative �’s do not
feel comfortable in a large homogenous cluster, thus they
tend to build smaller communities. It is interesting that the
personal attitude of an agent has such an important effect on
the clustering properties of the system in spite of the fact that
it is not defined as a bias toward a certain opinion but rather
as an agent’s ability or intention to adjust or not to any kind
of opinion of the other agents.

The high connectivity and clustering coefficient of the
final network configuration is the result of the appearance of
communities: if there are X communities of size n, then N
=Xn and if the clusters continue to be random, then
�k� / �C�=n. Therefore, the region of values of g for which
�k� / �C� is constant is where there are communities of size
N /X. In Fig. 3, we show this ratio as a function of g for
networks of different size. Notice that the region where com-
munities are formed is wider for larger networks and that as
the network size is increased the number of clusters X in-
creases as well. In the inset, we show the value of X for

FIG. 2. �Color online� Communities found by the local fitness
algorithm in the network configuration shown in the middle top of
Fig. 1 for a system with N=400, �k0�=4, and g=1000. The com-
munities are distinguished by arbitrary coloring, regardless of the
value of variable x or opinion.

FIG. 3. �Color online� The ratio �k� / �N�C�� as a function of g,
for various values of N. Each point corresponds to an average over
100 realizations. The inset shows the number of communities X as
a function of N for g=1000 and averaged over 1000 realizations.
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networks of various sizes, averaged over 1000 realizations
and keeping g=1000 constant. It is worth noticing that the
mean field prediction for a network of size N=400 is that the
system contains about eight communities on average, which
agrees well with the seven communities found by the local
fitness approach used in Fig. 2.

In addition, we have calculated the average neighborhood
degree as a function of node degree and found that our final
networks show assortative mixing, i.e., high degree nodes
are connected to other high degree nodes, as is common in
other social networks. As a kind of hypothetical exercise, we
have found that if we modify Eq. �5� by substituting �xi−xj�
with �xi+xj� and Eq. �6� by substituting �xi+xj� with �xi−xj�,
thus favoring similar opinions in link deletion and opposite
opinions in local rewiring, respectively, the final networks
show dissortative mixing instead.

Furthermore, though not reported in detail in this paper,
we have also performed numerical simulations to investigate
the effect of y �i.e., the proportion of focal closure events in
Eq. �2�� on the final configuration of the system. We have
performed calculations in networks of size N=400, keeping
�k0�=4 and g=100 constant, and varying y from 0 to 1. The
main result is that the clustering coefficient remains practi-
cally constant, except when y
1, where it decays. The av-
erage shortest path is reduced when y increases, which is to
be expected, since focal closure offers the opening of long
jumps in the network in the same manner as disorder pro-
duces small world properties in a ring. Finally, the average
degree increases slightly with y, also explainable by the same
token. More studies in this direction will be made in the
future.

IV. MEAN FIELD APPROXIMATIONS

In order to understand better the numerical results, we
analyze our model by using a mean field approach. With this,
one can investigate, for instance, how rapidly the agents
reach an irrevocable opinion, that is, how the mean number
of decided �or undecided� agents behaves as a function of
time in early stages of the dynamics, or when t
0. If we
take hi=0 as in our numerical calculations, Eq. �2� is sym-
metric with respect to the sign of xi. In this equation, the
term �i f0��xj�� is likely to be very small for two reasons:

�1� for t
0 the term f0��xj���0, because the distribution
of xj is symmetric around zero, and

�2� �i is a random parameter centered at 0, so when av-
eraged over i it turns out to be very small.

Then, one could write

ẋi = xi �
j�m1�i�

xj = �ixi,

which means that xi decays or grows exponentially at a rate
given by the magnitude of �i that varies locally. Without loss
of generality, we consider those xi that go to +1. Of all the
agents with xi�0, only the ones with �i�0 will reach even-
tually the maximum value 1, and this number is on the order
of N /4.

For early times, the number of agents with xi=1, denoted
by N1, is small and the probability of having a system of N1

agents in a “bath” of N should be of the canonical form
P1�N1�=e−	�N1 /Z�, where the “chemical potential” should fix
the average number �N1�. Since the probability for all the
states with a given value of xi is of the same form, and N
=N0+N1, the probability of having N0 states with x�1 is
P0�N0�=e−	N0 /Z, where

Z = �
N0=0

N

e−N0	 =
1 − e−	�N+1�

1 − e−	 = e−N	/2
sinh	 �N + 1�	

2



sinh		

2

 .

�8�

Now, the average fraction of undecided agents �n0�
= �N0� /N at a given time can be calculated as

�n0� =
1

Z
�

N0=0

N
N0

N
e−	N0 = −

1

N

� ln Z

�	
. �9�

The quantity 	 is difficult to calculate even with mean
field approach so we will consider it as an adjustable param-
eter. Here, we assume that 	 is of the form t /
, where 
 is a
large number. Taking into account both values of sgn�xi

0�,
one finally gets

�n0� = 1 −
N + 1

N
coth	N + 1

2

t




 +

1

N
coth	 t

2


 = 1 − BN	 t




 ,

�10�

where BN�t /
� is the Brillouin function found also for mag-
netic systems. In Fig. 4, we show the comparison of the
mean field prediction of Eq. �10� with numerical calculations
performed in networks of different sizes, and with a fixed
value of g=105. The parameter 
 was fitted with a least-
squares technique and has a value of approximately gN /40,
which for N�50 is indistinguishable from the Langevin
classical limit, independently of N. Then, the characteristic
time taken by an agent to reach its definite opinion is g /20,
so almost all the agents have reached their definite opinions
before rewiring.

FIG. 4. �Color online� Average fraction of undecided agents �n0�
as a function of time, in units of g, for various networks of different
size, where each point is an average over 1000 realizations. The
mean field prediction fitted with Eq. �10� is shown as a black line.

IÑIGUEZ et al. PHYSICAL REVIEW E 80, 066119 �2009�

066119-6



Notice that this result does not depend on the size of the
network, and that the fitting is very good for short times, but
starts to deviate significantly and systematically for longer
times. In the numerical calculations, more agents remain un-
decided than what is predicted by our mean field approxima-
tion. This is to be expected, since we have not taken into
account the effects of frustration due to changes in opinion
produced by the distribution of the personal attitude param-
eter �. Indeed, the difference between the mean field predic-
tion and the numerical value can be used as a measure of the
amount of frustration, which can become important in sub-
sequent rewirings.

So far, we have analyzed the fast dynamics of the state
variable but have not considered the rewiring processes. An
interesting thing to do is to compare the deviations of our
model results from the known properties of a random net-
work, for instance,

�k� = �C�N . �11�

Notice that in our model, �k� should be constant to first order,
since the network changes are such that every time a link is
deleted another one must be created. Therefore, a change in
degree �ki is due to simultaneous actions of both agents
connected by a link in the parallel rewiring scheme.

In each rewiring event, every agent deletes and creates the
same number of links, so the agent’s degree does not change.
However, if a neighbor decides to delete the same link and
create a different one, then two links are created but only one
deleted resulting in the average degree of the network to
increase. Similarly, if two agents independently decide to
create a link between them and both have deleted different
links, the average degree decreases. This can be expressed as
follows:

�ki = �ki
+ − �ki

−, �12�

where the first term stands for the correlated processes asso-
ciated to link deletion, increasing the degree and the second
term for the processes associated to link creation decreasing
the degree. Of the ki first neighbors of node i that could be
deleted, only a fraction f i

+ of them will produce a correlated
increase in the average degree. Then, one could write �ki

+

= f i
+ki.
In our numerical simulations, we have considered only

triadic closure mechanism as the process of creating links.
Thus, the second term in Eq. �12� should be proportional to
the number of second neighbors ni

�2�, or �ki
−= f i

−ni
�2�. Now,

only a fraction of the �kj −1� second neighbors of i connected
to first neighbor j will produce a correlated decrease of the
average degree. Let us denote this number by �f j

−kj −1�.
However, this holds only in a tree, where all the second
neighbors are different, but in a general network there should
be cyclic closures, like triangles �n�� and squares �n��.
Then, one may write

ni
�2� = �

j�m1�i�
�f j

−kj − 1� − 2ni
� − ni

�, �13�

where the summation runs over the first neighbors of i. The
factor of 2 in the second term is due to the fact that there are

two triangles associated with a single triad. The exact count
of links, according to Eq. �12�, is

��k� =
1

N
�
i=1

N

� f i
+ki − f i

−	 �
j�m1�i�

�f j
−kj − 1� − 2ni

� − ni
�
� .

�14�

The number of triangles is related to the clustering coeffi-
cient as

Ci =
2ni

�

ki�ki − 1�
. �15�

So far, we have not made any approximations. The factors
f i

+ and f i
− are time-dependent through the dynamics of the

state variables xi. It is clear that these factors are nonzero
only if the two sites involved in the same rewiring process
are still undecided, that is, the probability of having one of
these correlated rewirings should be proportional to �n0�2,
and can be calculated numerically by keeping track of the
rewiring matrices Pij and Qij defined as

Pij = �− 1 if j � Ni
�1��pij � 0

0 otherwise
� , �16�

and

Qij = �1 if j � Ni
�2��qij�0

0 otherwise
� , �17�

where Ni
�1� and Ni

�2� are subsets of the first and second neigh-
bors of agent i, such that their cardinalities are the same
because rewiring is the only operation allowed �see Eqs. �5�
and �6��. Then, it is clear that

f i
+ =

�P2�ii

�P2�ii + �Q2�ii
, and f i

− =
�Q2�ii

�P2�ii + �Q2�ii
. �18�

The normalization factor comes from the fact that only
operations taking place by both agents i and j simultaneously
contribute to the count in i. This is proportional to � j�Pij
+Qij�2 where PijQji=0. Then, f i

−=1− f i
+= f i. One can neglect

the term ni
� in Eq. �14� because the number of squares

should be small as compared with the number of triangles.
Also, we may assume that f i is very similar in all sites and
near to 1/2. In fact, one can trace the mean value of f i as a
function of time in the numerical calculations and see that it
converges very rapidly to the value 1/2. Performing the av-
erage over i and assuming the degree, the fraction of nodes,
and the clustering coefficient statistically independent, we
obtain

�k = �n0�2��1 − f�k − fk�fk − 1� + fCk�k − 1�� , �19�

where we have suppressed the brackets indicating averages
and dropped the subindex in all the quantities. Therefore, we
find a fixed point when

k =
1 − fC

f�f − C�
. �20�

In Fig. 5, we plot the result of Eq. �20� with f =1 /2 �con-
tinuous line� and compare it with the numerical results �open
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circles� and the linear dependence predicted by Eq. �11� for a
random network �dashed line�. Note that for any given aver-
age degree k, the clustering coefficient for the mean field and
numerical results is larger than for a random network, and
for k=N /2, all the clustering coefficients meet at value 1/2.
Also, we would like to point out that although in the mean
field approximation we have taken only a part of the second
order effects into account, it behaves qualitatively the same
as the numerical result.

V. CONCLUDING REMARKS

In this paper, we present a general approach to the prob-
lem of opinion formation on an adaptive network, which can
be considered as a basic problem of social network formation
and communication. The dynamical equation Eq. �1� and its
modification Eq. �2� contain several aspects of this problem,
which, to our knowledge have not been considered or ad-
dressed before. First, the role of general opinion of all the
agents in the system representing the overall mood sensed by
each individual with his/her own attitude toward it. Second,
the effect of the media as a kind of external field term, not as
a constant field as suggested before �see, e.g., �20��, but as an
agent-dependent reaction term corresponding to a personal
attitude toward the “manipulation” attempts by the media.
This makes the system reminiscent to a random field model.
Third, in our model the two time scales of the basic dynami-
cal processes are clearly separated and deterministically con-
trolled, unlike in other studies where an additional parameter
like bounded confidence controls the range within which dif-
ferent opinions act on each other �30�, thus affecting the time
scale at which opinions change. We note that also in our
model, the bounded confidence parameter could be included,
but we chose not to do so in the interest of not increasing the
number of adjustable parameters in the model. Fourth, in our
model, the rewiring has been done deterministically favoring
the triadic closure mechanism rather than random rewiring

mechanisms used in other studies �28–30,35�. In our model
both the basic link-rewiring mechanisms of network sociol-
ogy, namely, focal and triadic closure, have been included
but in this paper we have mainly focused on the effects of the
latter rewiring mechanism.

In this study, rather than exploring the entire richness of
our model, we have concentrated on the effect of the sepa-
ration of time scales for comparison with previous results.
We have shown that the important feature of coevolution is
the separation of the two basic time scales, namely, the rapid
dynamics of the state variable, and the slow dynamics of the
network rewiring. The only parameter of our model has been
g, serving as a measure of this separation.

As one of the key results, we have found that for interme-
diate values of the time scale variable g, the network turns
out to organize in well-connected small communities of
agents with the same opinion. This is in accordance with the
earlier study �30�, where it was found that communities
could form when the tolerance or bounded confidence pa-
rameter was varied, which could be understood to be due this
parameter changing the effective time scale for rewiring. In
addition, we have studied further the role of the difference in
time scales for fast and slow dynamics analytically by devis-
ing a mean field treatment. Using random network as a ref-
erence, we have found that the mean field results compare
quite well with the numerical results and both of them differ
significantly from the random network results.

In the future, we plan to investigate our model systemati-
cally and in detail for the effects of personal attitude param-
eter �i and the personal random field term of an agent hi, as
well as the relative importance parameter y between local
rewiring with triadic closure and global rewiring with focal
closure mechanisms. Furthermore, another interesting point
to investigate in our model would be the relative importance
of short and long range interactions.

As a final remark, we believe that our fully dynamical
approach and the kind of coevolving network model could be
applied to various other situations, not only in social net-
works but in other fields, like symbiotic relations between
two species sharing an ecological environment. Some of
these applications are currently a matter of further explora-
tions.
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FIG. 5. The average final degree as a function of the average
final clustering coefficient obtained from simulations in networks of
size N=400 and g=100, and several initial degrees �k0� �open
circles�. The prediction by Eq. �11� for a random network is shown
as a dashed line, and the mean field result of Eq. �20� is shown as a
continuous line.
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